Epithelial-mesenchymal signaling during the regionalization of the chick gut.
نویسندگان
چکیده
The development of the vertebrate gut requires signaling between the endoderm and mesoderm for establishing its normal anteroposterior (AP) axis and for tissue-specific differentiation. Factors implicated in positional specification of the AP regions of the gut include endodermally expressed Sonic hedgehog (Shh), mesodermally expressed Bmp4 and members of the Hox gene family. We have investigated the roles of these factors during AP regional specification of the chick embryonic gut. Early in gut development, the endoderm sends inductive signals to the mesoderm. Shh has been implicated as one of these signals. We find a differential response to exposure of the inductive influence of Shh along the AP axis of the gut. Virally mediated misexpression of Shh results in ectopic upregulation of its receptor Ptc and a cellular proliferation throughout the gut mesoderm. Although ectopic Shh can induce Bmp4 in the mesoderm of the midgut and hindgut, Bmp4 is not induced in the stomach region of the foregut. The stomach region has a thicker layer of mesoderm than the rest of the gut suggesting that the normal function of Bmp4 could be to limit mesodermal growth in the non-stomach regions of the gut. Ectopic Bmp4 expression in the stomach results in a reduction of the mesodermal component consistent with this hypothesis. In addition to the regional restriction on Bmp4 induction, Shh can only induce Hoxd-13 in the mesoderm of the hindgut. These findings suggest that a prepattern exists in the primitive gut mesoderm prior to expression of Shh in the endoderm. The gut mesoderm is subsequently responsible for inducing region-specific differentiation of its overlying endoderm. We tested the role of Hoxd-13, normally restricted in its mesodermal expression to the most posterior region of the hindgut (cloaca), in controlling adjacent endodermal differentiation. When virally mediated Hoxd-13 is misexpressed in the primitive midgut mesoderm, there is a transformation of the endoderm to the morphology and mucin content of the hindgut. Thus, the positionally restricted expression of a Hox gene in the gut mesoderm influences the inductive signaling that leads to regionally specific differentiation of gut endoderm.
منابع مشابه
Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut.
Reciprocal inductive signals between the endoderm and mesoderm are critical to vertebrate gut development. Sonic hedgehog encodes a secreted protein known to act as an inductive signal in several regions of the developing embryo. In this report, we provide evidence to support the role of Sonic hedgehog and its target genes Bmp-4 and the Abd-B-related Hox genes in the induction and patterning th...
متن کاملMesenchymal regulation of epithelial gene expression in developing avian stomach: 5'-flanking region of pepsinogen gene can mediate mesenchymal influence on its expression.
The expression of a gene encoding an embryonic chick pepsinogen was investigated in developing avian gut. Expression is restricted to the epithelial layer of the embryonic proventriculus (glandular stomach). We can therefore regard this gene as a marker gene for proventricular epithelial differentiation. There is some considerable evidence in favour of epithelial-mesenchymal interactions being ...
متن کاملMolecular Signaling in Tumorigenesis of Gastric Cancer
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens...
متن کاملCollective Epithelial and Mesenchymal Cell Migration During Gastrulation
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the ch...
متن کاملAnalysis of Soluble Mesenchymal-Epithelial Transition Factor and Hepatocyte Growth Factor Serum Levels in Children With Autism Spectrum Disorder
Background: Hepatocyte Growth Factor (HGF) and its receptor, Mesothelial-Epithelial Transition (cMet) factor signaling, play an essential role in controlling synaptogenesis. Objectives: Because of the vital role of HGF and Met signaling in synaptogenesis and spatial learning function of the brain’s hippocampal region, we aimed to study the HGF and soluble cMet (s-cMet) serum levels in childre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 125 15 شماره
صفحات -
تاریخ انتشار 1998